• 藍色版面
  • 綠色版面
  • 橘色版面
  • 粉紅色版面
  • 棕色版面
帳號:guest(120.119.126.29)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

本論文引用網址:     
研究生: 陳郁仁
研究生(外文): Yu-Ren Chen
論文名稱: 可控制退化率之有限計畫期間存貨模式研究
論文名稱(外文): A finite planning horizon inventory model for deteriorating items with time-varying demand and controllable deterioration rate
指導教授: 戴忠淵
指導教授(外文): Chung-Yuan Dye
學位類別: 碩士
校院名稱: 樹德科技大學
系所名稱: 經營管理研究所
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 36
中文關鍵詞: 存貨退化率保存技術成本粒子群演算法
外文關鍵詞: InventoryDeterioration ratePreservation technology costParticle swarm optimization
相關次數:
  • 被引用:0
  • 點閱:4
  • 評分:*****
  • 下載:0
  • 書目收藏:0
  本研究提出一個在有限規劃期間內需求率隨時間變動的退化性存貨模型。此外,我們也將投資保存技術成本納入模式中考慮作為決策變數。本研究之目的為找到最佳補貨和保存技術投資策略使得有限規劃期間內總成本為最小。對於任一給定可行的訂購策略,我們首先證明最佳的保存技術投資策略不僅存在而且唯一。接著,我們也利用由本研究所推得最佳解的一些性質利用粒子群演算法作為求解的工具。最後,我們也將利用數值範例說明求解過程及驗證模式之合理性及實用性。同時,本研究擬對重要的參數進行敏感度分析,以瞭解各參數變動對最適解的影響。

  In this study, we formulate a deteriorating inventory model with timing varying demand by allowing preservation technology cost as a decision variable in conjunction with replacement policy. The objective is to find the optimal replenishment and preservation technology investment strategies while minimizing the total cost over the planning horizon. For any given preservation technology cost, we first prove that the optimal replenishment schedule not only exists but is unique. A particle swarm optimization is coded and used to solve the mixed-integer nonlinear programming problem by employing the properties derived from this paper. Some numerical examples are used to illustrate the features of the proposed model.

目  錄
中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . .v
英文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . vi
誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . vii
目錄 . . . . . . . . . . . . . . . . . . . . . . . . . .viii
表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . .x
圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . xi
符號與假設 . . . . . . . . . . . . . . . . . . . . . . . . xii
1 緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 研究背景 . . . . . . . . . . . . . . . . . . . . . . . .1
1.2 文獻探討 . . . . . . . . . . . . . . . . . . . . . . . .2
1.3 研究流程 . . . . . . . . . . . . . . . . . . . . . . . .5
2 模式建立 . . . . . . . . . . . . . . . . . . . . . . . . .6
3 問題求解 . . . . . . . . . . . . . . . . . . . . . . . . .9
3.1 粒子群演算法 . . . . . . . . . . . . . . . . . . . . . . 9
3.2 求解過程 . . . . . . . . . . . . . . . . . . . . . . . 11
4 結果分析 . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 數值範例 . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.1 範例一 . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.2 範例二 . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.3 範例三 . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 敏感性分析 . . . . . . . . . . . . . . . . . . . . . . .24
5 結論 . . . . . . . . . . . . . . . . . . . . . . . . . .29
參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . 30
附錄一. . . . . . . . . . . . . . . . . . . . . . . . . . .34


[1] Benkherouf, L. (1995), On an inventory model with deteriorating items and decreasing time-varying demand and shortages. European Journal of Operational Research, 86, 293–299.
[2] Chang, H.J., and Dye, C.Y. (1999), An EOQ model for deteriorating items with time-varying demand and partial backlogging. Journal of the Operational Research Society, 50, 1176-1182.
[3] Clerc, M. (1999), The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. Proceedings of the Congress on Evolutionary Computation, 3, 19511957.
[4] Covert, R.P., and Philip, G.C. (1973), An EOQ model for items with Weibull distribution deterioration. AIIE Transactions, 5, 323-326.
[5] Datta, T.K., and Pal, A.K. (1988), Order level inventory system with power demand pattern for items with variable rate of deterioration. Indian Journal of Pure
and Applied Mathematics, 19, 1043–1053.
[6] Dave, U., and Patel, L.K. (1981), (T,Si) policy inventory model for deteriorating items with time proportional demand. Journal of the Operational Research Society, 32,137–142.
[7] Donaldson, W.A. (1977), Inventory replenishment policy for a linear trend indemand -an analytical solution. Operational Research Quarterly 28, 663-670.
[8] Eberhart, R.C., and Kennedy, J. (1995), A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micromachine and
Human Science, 39-43.
[9] Eberhart, R.C., and Shi, Y. (2000), Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization. Proceedings of the 2000 Congress on Evolutionary Computation, 1, 8488.
[10] Erlenkotter, D. (1989), An early classic misplaced: Ford w. harris’s economic order quantity model of 1915. Management Science, 35, 898–900.
[11] Erlenkotter, D. (1990), Ford whitman harris and the economic order quantity model. Management Science, 38, 937–946.
[12] Ghare, P.M., and Schrader, G.F. (1963), A model for exponential decaying inventory. Journal of Industrial Engineering, 14, 238-243.
[13] Gupta, R., and Vrat, P. (1986), Inventory model for stock-dependent consumption rate. Opsearch, 23, 19-24.
[14] Hariga, M.A. (1996), Optimal eoq models for deteriorating items with time-varying demand. Journal of the Operational Research Society, 47, 1228–1246.
[15] Hariga, H., and Shinn, S.W. (1997), Retailer’s pricing and lot sizing policy for exponentially deteriorating products under the condition of permissible delay in payments. Computers and Operations Research, 24, 539-547.
[16] Harris, F.W. (1915), Operation and cost factory management series. A. W. Shaw Co., Chicago, 48-52.
[17] Hsu, P.H., Wee, H.M., and Teng, H.M. (2010), Preservation technology investment for deteriorating inventory. International Journal of Production Economics, 124, 388-394.
[18] Kennedy, J., and Eberhart, R.C. (1995), Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks, 6, 1942-1948.
[19] Padmanabhan, G., and Vrat, P. (1995), EOQ models for perishable items under stock dependent selling rate. European Journal of Operational Research, 86, 281-
292.
[20] Papachristos, S., and Skouri, K. (2000), An Optimal Replenishment Policy for Deteriorating Items with Time-varying Demand and Partial-Exponential Type-Backlogging. Operations Research Letters, 27, 175-184.
[21] Park, K.S. (1982), Inventory model with partial backorder. International Journal of System Science, 13, 1313-1317.
[22] Phelps, R.I. (1980), Optimal inventory rule for a linear trend in demand with a constant replenishment period. Journal of the Operational Research Society, 31, 439–442.
[23] Philip, G.C. (1974), A generalized EOQ model for items with Weibull distribution. AIIE Transactions, 6, 159-162.
[24] Ritchie, E. (1984), The eoq for linear increasing demand: a simple optimal solution. Journal of the Operational Research Society, 35, 949–952.
[25] Roach, B. (2005), Origin of the economic order quantity formula; transcription or transformation? Management Decision, 43, 1262–1268.
[26] Sachan, R.S. (1984), On (t, si) inventory policy model for deteriorating items with time proportional demand. Journal of the Operational Research Society, 35,
1013–1019.
[27] Shah, Y.K. (1976), An order-level lot-size inventory model for deterioration items. AIIE Transactions, 9, 108-112.
[28] Shi, Y., and Eberhart, R.C. (1998), A Modified Particle Swarm Optimizer, Proceedings of IEEE International Conference on Evolutionary Computation, 6973.
[29] Shi, Y., and Eberhart, R.C. (1998), Parameter Selection in Particle Swarm Optimization. Lecture Notes in Computer Science, 1447, 591-600.
[30] Shi, Y., and Eberhart, R.C. (2001), Tracking and optimizing dynamic systems wiparticle swarm. Proceedings of the 2001 Congress on Evolutionary Computation, 1, 94-100.
[31] Shinn, S.W., and Hwang, H. (2003), Optimal pricing and ordering policies for retailers under order-size-dependent delay in payments. Computers and Operations Research, 30, 35-50.
[32] Silver, E.D. (1979), A simple inventory replenishment decision rule for a linear trend in demand. Journal of the Operational Research Society, 30, 71–75.
[33] Teng, J.T. (1994), A note on inventory for replenishment policy for increasing demand. Journal of the Operational Research Society, 45, 1335–1337.
[34] Wee, H.M. (1995), A deterministic lot-size inventory model for deteriorating items with shortages and a declining market. Computers and Operations Research, 22, 345-356.
[35] Wilson, R.H. (1934), A scientific route for stock control. Harvard Business Review, 13, 116–128.
[36] Wu, J.W., Lin, C., Tan, B., and Lee, W.C. (1998), An EOQ inventory model with time varying demand and Weibull deterioration with shortage. International Journal of System Science, 31, 391-400.
[37] Zheng, Y.I., Ma, L.H., Zhang, L.Y., and Qian, J.X. (2003), Empirical study of particle swarm optimizer with an increasing inertia weight. Evolutionary Computation, 1, 221-226.


 電子全文(網際網路公開日期:20120526)
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 top
* *