• 藍色版面
  • 綠色版面
  • 橘色版面
  • 粉紅色版面
  • 棕色版面
帳號:guest(120.119.126.29)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

研究生: 蕭博元
研究生(外文): Po-Yuan Hsiao
論文名稱: 以位能場模型為基礎之群組機器人移動規劃
論文名稱(外文): A Motion Planning of Swarm Robots Using Potential-Based Genetic Algorithm
指導教授: 林峻立
指導教授(外文): Chun-Li Lin
學位類別: 碩士
校院名稱: 樹德科技大學
系所名稱: 資訊工程系碩士班
論文出版年: 99
畢業學年度: 98
語文別: 中文
論文頁數: 76
中文關鍵詞: 群組機器人隊形控制芙諾以圖人工位能場基因演算法
外文關鍵詞: Swarm roboticsformation controlVoronoi diagramartificial potential filedgenetic algorithm
相關次數:
  • 被引用:0
  • 點閱:30
  • 評分:*****
  • 下載:0
  • 書目收藏:0
本論文提出一階層式的群組機器人移動規劃演算法來規劃出一序列群組機器人的移動軌跡。所提出之演算法包含(1)整體移動演算法及(2)區域移動演算法兩階段。整體移動演算法是建構自由空間中的芙諾以圖作為群組機器人中心的移動軌跡; 區域移動演算法是使用基於人工位能場之基因演算法規劃出機器人的移動路徑。透過將障礙物之位能場模型由多邊形均勻帶電來模擬,能更精確表現障礙物外形。本論文所提出演算法規劃之路徑將是一條較安全的路徑,且機器人在移動的過程中能夠做到隊形的保持。
In this thesis, a potential-based genetic algorithm is proposed for formation control of robot swarm. The proposed algorithm consists of a global path planner and a motion planner. The global path planning algorithm searches a path, which the center of robot swarm should follow, within a Voronoi diagram of the free space. The motion planning is a genetic algorithm based on artificial potential models. The potential functions are used as a repulsion to keep robots away from obstacles and as an attraction/repulsion to keep robot swarm within a certain distance. With Voronoi diagram and potential models, the algorithm plans safe paths efficiently and the formation of robot swarm is also maintained.
摘要          i
ABSTRACT        ii
誌謝          iii
目錄          iv
表目錄          vi
圖目錄          vii
一、緒論        1
1.1  前言        1
1.2  群組機器人系統特性      3
1.3  研究目的        4
1.4  論文結構        5
二、群組機器人隊形控制相關研究    6
2.1  同質系統與異質系統群組機器人  7
2.2  集中式與分散式路徑規劃系統    9
2.3  隊形控制方法      11
三、階層式群組機器人路徑規劃演算法  13
3.1  整體移動演算法      15
3.1.1  Bug 演算法      15
3.1.2  位能場法(Potential Field)  17
3.1.3  可視圖法(Visibility Graph)  18
3.1.4  芙諾以圖法(Voronoi Diagram)  20
3.2  區域移動演算法      25
四、實驗結果        33
4.1  群組機器人隊形保持之驗證    34
4.2  路徑修正        35
4.3  路徑無交叉驗證      36
4.4  階層式群組機器人路徑規劃結果  37
4.5  實驗結果分析      49
五、結論與未來展望      72
參考文獻        74
[1]DVICE Website,http://dvice.com/archives/2008/02/roboporter_robo.php
[2]新华网,http://news.xinhuanet.com/it/2003-11/07/content_1166026.htm
[3]WIKIPEDIA,http://en.wikipedia.org/
[4]G. Erinc, S. Carpin, "A genetic algorithm for nonholonomic motion planning," in Proc. 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, April, 2007, pp. 1843-1849.
[5]R. Brooks, In Proceedings of First International Conference on Simulation of Adaptive Behavior: From Animals to Animats, MIT Press, Cambridge, 1991.
[6]D. Goldberg, "Heterogeneous and Homogeneous Robot Group Behavior".
[7]L. Vig, J. Adams, "Multi-robot coalition formation," in IEEE Trans. on Robotics, vol. 22, no. 4, August, pp. 637-649, 2006.
[8]W. Ren, R. Beard, "Consensus seeking in multiagent systems under dynamically changing interaction topologies," in IEEE Transactions on Automatic Control, vol. 50, no. 5, May, pp.655-661, 2005.
[9]L. Moreau, "Stability of multiagent systems with time-dependent communication links," in IEEE Transactions on Automatic Control, vol. 50, no. 2, February, pp.169-182, 2005.
[10]R. Olfati-Saber, "Flocking for multi-agent dynamic systems: algorithms and theory," in IEEE Transactions on Automatic Control, vol. 51, no. 3, March, pp. 401-420, 2006.
[11]H. Tanner, G. Pappas, V. Kumar, "Leader-to-formation stability," in IEEE Trans. Robot. Autom., vol. 20, no. 3, June, pp. 443-455, 2004.
[12]T. Dierks, S. Jagannathan, "Control of Nonholonomic Mobile Robot Formations: Backstepping Kinematics into Dynamics," in IEEE International Conference on Control Applications, October, 2007, pp. 94-99.
[13]D. Popa, H. Stephanou, C. Helm, A. Sanderson, "Robotic deployment of sensor networks using potential fields," in Proc. IEEE Int. Conf. Robot. Autom., New Orleans, LA, April, vol. 1, pp. 642–647, 2004.
[14]S. Kloder, S. Hutchinson, "Path planning for permutation-invariant multi-robot formations," in IEEE Trans. on Robotics, vol. 22, no. 4, August, pp. 650-665, 2006.
[15]W. Burgard, M. Moors, C. Stachniss, F. Schneider, "Coordinated multi-robot exploration," in IEEE Trans. on Robotics, vol. 21, no. 3, June, pp. 376–386, 2005.
[16]M. Egerstedt, X. Hu, "Formation constrained multi-agent control," in IEEE Transactions on Robotics and Automation, vol. 17, no. 6, December, pp. 947-951, 2001.
[17]L. Barnes, W. Alvis, M. Fields, K. Valavanis, W. Moreno, "Heterogeneous Swarm Formation Control Using Bivariate Normal Functions to Generate Potential Fields," in IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications, 2006, pp. 85-94.
[18]G. Lionis, K. Kyriakopoulos, "Approximate control of formations of multiagent systems," in Proc. IEEE Conf. Decision Control and European Control Conf., Seville, Spain, December, 2005, pp. 4958-4963, .
[19]G. Baldassarre, V. Trianni, M. Bonani, F. Mondada, M. Dorigo, S. Nolfi, "Self-Organized Coordinated Motion in Groups of Physically Connected Robots," in IEEE Transactions on Systems, Man, and Cybernetics - Part B:Cybernetics, vol. 37, no. 1, February, pp. 224-239, 2007.
[20]H. Tanner, A. Jadbabaie, G. Pappas, "Flocking in fixed and switching networks," in IEEE Transactions on Automatic Control, vol. 52, no. 5, May, pp. 863-868, 2007.
[21]V. Gazi, "Swarm aggregations using artificial potentials and sliding-mode control,"  in IEEE Trans. on Robotics, vol. 21, no. 6, December, pp. 1208-1214, 2005.
[22]D. Fox, W. Burgard, H. Kruppa, S. Thrun, "A probabilistic approach to collaborative multi-robot localization," in Auton. Robots, vol. 8, no. 3, June, pp. 325-344, 2000.
[23]S. Mastellone, D. Stipanovi´c, M. Spong, "Remote Formation Control and Collision Avoidance for Multi-Agent Nonholonomic Systems," in Proc. 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, April, 2007, pp. 1062-1067.
[24]C. Fua, S. Ge, K. Do, K. Lim, "Multi-Robot Formations based on the Queue-Formation Scheme with Limited Communications," in Proc. 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, April, 2007, pp. 2385-2390.
[25]Y. Chen, Z. Wang, "Formation control: a review and a new consideration," in IEEE/RSJ International Conf. Intelligent Agents and Systems, 2005.
[26]C. Clark, "Probabilistic Road Map sampling strategies for multi-robot motion planning," in Robotics and Autonomous Systems, vol. 53, pp. 244–264, 2005.
[27]V. Lumelsky, A. Stepanov, "Path planning strategies for point mobile automaton moving amidst unknown obstacles of arbitrary shape," in Algorithmica, vol. 2, pp. 403-430, 1987.
[28]T. Dierks, S. Jagannathan, "Control of Nonholonomic Mobile Robot Formations: Backstepping Kinematics into Dynamics," in IEEE International Conference on Control Applications, October, 2007, pp. 94-99.
[29]H. Choset, et al., Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT Press, Cambridge, 2005.
[30]O. Takahashi, R. Schilling, "Motion Planning in a Plane Using Generalized Voronoi Diagrams," in IEEE Transactions on Robotics and Automation, vol. 5, no. 2, April, pp. 143-150, 1989.
[31]R. Mahkovic, T. Slivnik, "Generalized Local Voronoi Diagriarn of Visible Region," in International Conference on Robotics & Automation, Leuven, Belgium, May, 1998, pp 349-355.
[32]R. Wein, Jur P. van den Berg, D. Halperin, "The visibility–Voronoi complex and its applications," in Computational Geometry, 2007, pp. 66-87.
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
* *