• 藍色版面
  • 綠色版面
  • 橘色版面
  • 粉紅色版面
  • 棕色版面
帳號:guest(120.119.126.29)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

研究生: 張庭端
研究生(外文): Ting-Duan Chang
論文名稱: CMOS積體電路與混成電路之射頻低雜訊放大器設計與製作
論文名稱(外文): Design and Implementation of Low Noise Amplifier Using CMOS and Hybrid Technology
指導教授: 陳武男
指導教授(外文): Wu-Nan Chen
學位類別: 碩士
校院名稱: 樹德科技大學
系所名稱: 電腦與通訊研究所
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 71
中文關鍵詞: 低雜訊放大器
外文關鍵詞: LNA
相關次數:
  • 被引用:4
  • 點閱:28
  • 評分:*****
  • 下載:10
  • 書目收藏:0
本論文包含被動元件之濾波器設計與主動低雜訊放大器電路之設計,濾波器設計利用缺陷型結構,作成符合IEEE 802.15.3a之寬頻濾波器,在低雜訊放大器使用電晶體(FET)混成微波積體電路及金屬氧化半導體(CMOS)來製作射頻低雜訊放大器。
寬頻濾波器,上層採用平行偶合形式,下層則利用缺陷型接地結構來產生寬頻濾波器其頻寬為(3-5GHz)。在混成低雜訊放大器電路使用FET(NEC32584C)電晶體為共源極(CS)架構應用於5.2GHz量測出具良好特性其增益為14.2dB,雜訊指數為2.8dB。在CMOS電路採用台灣積體電路(TSMC)0.18μm製程設計低雜訊放大器採疊接 (Cascode)電路架構應用於10GHz的X頻帶,消耗功率為18.9mW,增益為16.1dB,具有極低的雜訊指數為2.3dB。和製作另一個可控制38GHz低雜訊放大器採用串接(Cascade)5極電路架構應用於LMDS系統,消耗功率為18.4 mW,增益為17.5dB,雜訊指數為4.9dB,其可控制增益其應用於第二種規格。
This thesis contains passive filter and active low noise amplifiers. In passive filter design, defect ground structure (DGS) is utilized for wide band application for IEEE 802.15.3a. In low noise amplifiers, the FET hybrid microwave integrated circuit was implemented for 802.16 and two CMOS process LNA were designed for millimeter wave application.
The proposed wide band bandpass filter employs a microstrip parallel couple on the upper metal layer and DGS on the bottom layer, which can produce passband of 3-5GHz. In hybrid low noise amplifier integrated circuit, FET (NEC32584C transistor) applying common source configuration is exploited for 5.2GHz center frequency. The performance includes measured power gain 14.2 dB and noise figure 2.8 dB. A cascade LNA operated at 10GHz for X band application was realized in TSMC 0.18-μm process. The simulation characteristics contains power consumption 18.9 mW, power gain 16.1 dB and low noise figure of 2.3 dB. The other CMOS LNA was designed at 38GHz using five-pole Cascade technology, which possesses additional gain control function. This low noise amplifier for LMDS application features power consumption of 18.4 mW, power gain of 17.5dB and noise figure of 4.9 dB.
中文摘要  i
英文摘要  ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 導論 1
1.1 研究動機 1
1.2 論文大綱 3
第二章 缺陷型式寬頻濾波器 4
2.1 簡介 4
2.2 缺陷型式濾波器之原理分析 4
2.3 缺陷型式寬頻濾波器之設計分析 6
第三章 射頻收發架構與低雜訊放大器 13
3.1 射頻收發架構簡介 13
3.2 低雜訊放大器原理介紹 14
3.2.1 雜訊指數 14
3.2.2 增益 15
3.2.3 穩定度 17
3.2.4 1dB增益壓縮點 20
3.2.5 交互調變失真 21
3.2.6 三階交互調變點 24
第四章 以混成電路(PCB)低雜訊放大器設計 25
4.1 簡介 25
4.2 場效電晶體的直流偏壓電路 25
4.3 電路設計與實做成品圖 26
4.4 模擬與量測結果 28
第五章 10GHz CMOS低雜訊放大器設計 32
5.1 簡介 32
5.2 電路設計與佈局圖 32
5.3 模擬與量測結果 37
第六章 38GHz可控制增益CMOS低雜訊放大器設計 44
6.1 簡介 44
6.2 電路設計與佈局圖 44
6.3 模擬與量測結果50
第七章 結論 59
參考文獻 60
[1]I. D. Robertson and S. Lucyszyn, “RFIC and MMIC design and technology”
[2]David M. Pozar, Microwave Engineering, John Wiley & Sons.
[3]H.W Wu, W.N Chen, M.H Weng, ”Study of Microstrip Bandpass Filters with High Spurious Suppression,” dissertation for Master, July 2004.
[4]B. Razavi, RF Microelectronics. Prentice Hall, Upper Saddle River,NJ,1998
[5]Foley, B. ;Murphy,A “A monolithic SiGe 5 GHz low noise amplifier and tuneable image-reject filter for wireless LAN applications” ;High Frequency Postgraduate Student Colloquium, pp.26-31,2000.
[6]A.A.Abibi, “Direct-conversion Radio Transceivers for Digital Communcation,” IEEE Journal of Solid-state Circuit,Vol.30, No.12, pp.1399-1410, December 1995.
[7]P. Vizmulleri, RF Design Guide: Systems, Circuits, and Equations, Artech House, 1995
[8]B. Razavi, RF Microelectronics, Prentice Hall, 1997.
[9]D.K Shaffer, and T.H.Lee, “A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier,” IEEE Journal of Solid-State Circuit, vol.32 ,No.5,PP.745, May 1997
[10]育英科技有限公司,射頻電路設計實習,滄海書局,民國90年。
[11]I. D. Robertson and S. Lucyszyn, “RFIC and MMIC design and technology”
[12]Guillermo Gonzaley, “Microwave Transistor Amplifiers analysis and Design second edition”, Prentice Hall, 1997
[13]Xuezhen Wang; Weber, R..: ‘Low voltage low power SiGe BiCMOS X-band LNA design and its comparison study with IEEE 802.11a LNA design’. Radar Conference, IEEE International 9-12 Page(s):27 - 30 May 2005
[14]Kuan-Hung Cheng and Chorng-Kuang Wang, “A 3.1-10.6GHz CMOS cascaded two-stage distributed amplifier for ultra-wideband application,” Advanced System Integrated Circuits 2004.
[15]A. Masud, H. Zirath, M. Ferndahl, and H.-O. Vickes, “90-nm CMOS MMIC amplifier,” in  RFIC Symp. Dig, pp. 971–974, 2004.
[16]F. Ellinger, “26-42 GHz SOI CMOS low noise amplifier”, IEEE J. of Solid-State Circuits, vol. 39, pp. 522-528, 1992.
[17]C. Patrick Yue, and S. Simon Wong, “On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC´s”, IEEE Journal of Solid-State Circuits, Vol. 33, No. 5, pp. 743-752 ,May 1998.
[18]Shin, S.-C.; Ming-Da Tsai; Ren-Chieh Liu; Lin, K.-Y.; Huei Wang ‘A 24-GHz 3.9-dB NF low-noise amplifier using 0.18μm CMOS technology’. Volume 15,Issue 7,Page(s):448 – 450 July 2005.
[19]K.-W. Yu, Y.-L. Lu, D.-C. Chang, V. Liang, and M. F. Chang, ‘K-Band low-noise amplifiers using 0.18 μm CMOS technology,’ IEEE Microw. Wireless Compon. Lett., vol. 14, no. 3, pp. 106–108, Mar. 2004.
[20]Kyung-Wan Yu; Yin-Lung Lu; Da-Chiang Chang; Liang, V.; Chang, M.F.; ‘ K-band low-noise amplifiers using 0.18μm CMOS technology’ Microwave and Wireless Components Letters, IEEE [see also IEEE Microwave and Guided Wave Letters] Volume 14,Issue 3,Page(s):106 – 108 March 2004.
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
* *