• 藍色版面
  • 綠色版面
  • 橘色版面
  • 粉紅色版面
  • 棕色版面
帳號:guest(120.119.126.29)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

研究生: 高國峰
研究生(外文): Kuo-Feng Kao
論文名稱: 快速立體曲面樣版攤平演算法之研究
論文名稱(外文): Fast Algorithms for the fatting of 3D Surfaces
指導教授: 林易泉
指導教授(外文): Yih-Chuan Lin
學位類別: 碩士
校院名稱: 樹德科技大學
系所名稱: 資訊管理研究所
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 86
中文關鍵詞: 三維曲面攤平二維樣版三維電腦輔助設計堆積樹
外文關鍵詞: 3D Surfaces Flattening2D Patterns3D CADHeap Tree
相關次數:
  • 被引用:0
  • 點閱:22
  • 評分:*****
  • 下載:0
  • 書目收藏:0
本論文旨在研究立體曲面上求得對應之二維平面樣版工作中,如何加速其攤平演算法之研究。許多產業如,製鞋、成衣、造船、地圖、醫療與製造等產業,應用電腦輔助設計/電腦輔助製造系統中立體曲面攤平成樣版之重要功能,可自動展開獲得產品平面資訊,供後績之設計和製造階段。由於曲面攤平樣版在實際應用場合中經常是包含非常複雜的立體曲面,如雙曲與橢圓曲率等兩種不可攤平曲面,需要花費相當大的計算量與複雜的程序,且攤平時會造成失真問題發生。若要減少失真程度提高攤平品質,得需要更多執行計算的時間來修正誤差,因此本論文即針對立體曲面攤平二維樣版之演算法,進行研究,提出新的快速曲面攤平方法。
          本研究首先進行文獻回顧,探索研究現況。在不考慮材料之厚度、彈性等因素下,曲面攤平方法文獻中,本研究針對英國學者McCartney在1999發表之方法改良之,McCartney很有系統的描述他的方法,舉例與驗證此法的表現也相當良好。但其演算法之需花費在能量釋放執行時期之時間複雜度卻相當高,處理大型立體曲面時,需要冗長的計算時間,而降底整體效能。故本研究即提出一利用最大堆積樹之資料結構與能量可累積之觀念,進行釋能路徑走訪之演算法,使其在攤平時減少釋能量釋放所產生之大量運算時間,並開發成電腦上實用的軟體程式。
The goal research in this paper is showing how to fast the algorithms for 3D surfaces flattening by deriving homologous 2D patterns from triangulated 3D surfaces. Many industries, such as shoemaking, clothing factory, shipbuilding industry, cartography, medical equipment industry and manufacturing industry etc., applied the important function of 3D Surfaces flattened into 2D patterns in CAD/CAM systems. To use this function can get the information about the flat surface automatically, and also provide the key data for the following designing and manufacturing process. But flattening 3D surfaces into 2D patterns has usually including complex 3D surfaces in the illustrated cases. For example, like elliptical curvature and hyperbolic curvature, these two kinds of non-developable surface require a considerable computing and time-consuming process. Besides it’s easily to result the inaccuracy problem when we are trying to flatten it. If we want to decrease the inaccuracy problem and raise the quality at the same time, it will take much more time to correct the error. Thus, methods of speeding up the unfolding process are the focus in this paper.
          In order to do this research, an extensive literature review on the current status of methods has conducted first. We paid more attention to improve a method that was proposed by McCartney in 1999.In his literature of surfaces flattening that the material’s thickness and elasticity is out of consideration. In his work, McCartney gave a more systematic solution description than others do the same thing, and the algorithm performs well in the illustrated cases. However, the algorithm of McCartney requires a considerable computing and a time-consuming process when the 3D surfaces become larger or more complex. So, in this research we presented new concepts about using the Max heap tree of data structure and the energy can be storing to do the improvement in 3D surfaces flattening.
中文摘要 i
          Abstract ii
          誌 謝 iii
          目 錄 iv
          圖目錄 v
          表目錄 vii
          第一章、緒論 1
          1.1、研究背景與動機 2
          1.2、研究目的 3
          1.3、研究流程及步驟 3
          1.4、論文結構 4
          第二章、文獻探討 5
          2.1、曲面分析 6
          2.2、曲面攤平的相關研究 7
          2.3、有限元素法 10
          2.4、旋轉正交特性 13
          2.5、疊代能量釋放法 16
          2.6、攤平方法評析 21
          第三章、快速攤平法 23
          3.1、研究方法與流程 24
          3.2、實作設計與方法 26
          3.3、降低能量釋放頻率 27
          3.4、減少能量釋放計算量 28
          3.5、攤平品質與失真指標之評估 33
          3.6、降低能量值 33
          第四章、實驗結果 38
          4.1、實驗環境與變數 39
          4.2、可攤曲面 40
          4.3、不可攤曲面 40
          4.4、尖褶與布襠 42
          4.5、實驗結果與分析 47
          第五章、結論與未來方向 56
          5.1、結論與建議 57
          5.2、未來研究方向 57
          參考文獻 59
[1]. 中國紡織工業研究中心,3D人體掃描技術應用研究會,2000年。
[2]. 吳大任編,微分幾何講義,高等教育出版。
[3]. 吳鴻昆,不可展曲面攤平方法之探討,國立中興大學機械工程學系,2002年。
[4]. 祝華健,電腦繪圖的數學基礎,儒林圖書公司。
[5]. 楊智傑,電腦輔助立體服裝曲面之二維展開--非可展曲面之攤平與應用,國立成功大學工業設計學系碩博士班,2002年。
[6]. 經濟部所屬事業單位協助中小企業推動研究發展計畫︰合約編號︰P188048
[7]. 薛秀珍編著,成衣打版與放縮,薛秀珍服裝設計出版社,1991年。
[8]. Geist, “PVM and MPI: What else is needed for Cluster Computing?”, in proc. of EuroPVM/MPI 2000, LNCS 1908, pp. 1-2, 2000.
[9]. Symons, and V. L. Narasimhan, “Development of a Method of Optimizing Data Distribution on a Loosely Coupled Multiprocessor System,” IEE Proc.-Comput. Digit Tech., Vol. 143, No. 4, pp.139-245, 1996.
[10]. K. Hinds and J. McCartney, “Interactive Garment Design,” The Visual Computer, pp. 53-61, 1990.
[11]. K. Hinds, J. McCartney, and G. Woods, “Pattern Development for 3D Surfaces,” Computer-Aided Design, Vol. 23, No. 8, pp. 583-592, 1991.
[12]. K. Hinds, J. McCartney, C. Hadden, and J. Diamond, “3D CAD for Garment Design,” International Journal of Clothing Science and Technology, Vol. 4, No. 4, pp. 6-14, 1992.
[13]. Beowulf Clusters: Introduction and Overview, http://www.beowulf.org/.
[14]. A. Bohn, G. B. Lamont, “Load Balancing for Heterogeneous Clusters of PCs,” Future Generation Computer Systems, Vol. 18, pp.389-400, 2002.
[15]. C. Fonlupt, P. Marquet, and J-L Dekeyser, ”Data-Parallel Load Balancing Strategies,” Parallel Computing, Vol. 24, p. 1665-1684, 1998.
[16]. C. N. Sekharan, V. Goel, and R. Sridhar, “Load Balancing Methods for Ray Tracing and Binary Tree Computing using PVM,” Parallel Computing, Vol. 21, pp. 1963-1978, 1995.
[17]. D. Bloch, A First Course in Geometric Topology and Differential Geometry, Birkhäuser Boston 1997.
[18]. L. Schwartz, A. Shaw, and E. Wolfson, “A Numerical Solution to the Generalized Mapmaker’s Problem: Flattening Nonconvex Polyhedral Surfaces,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 11, No. 9, pp. 1005-1008, 1989.
[19]. E. Wolfson and E. L. Schwartz, “Computing Minimal Distance on Polyhedral Surfaces,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 11, No. 9, pp. 1001-1005, 1989.
[20]. Heisey, P. Brown, and R. F. Johnson “Three-dimensional Pattern Drafting: Part I Projection,” Textile Research Journal, Nov. pp. 690-696, 1990.
[21]. Elber, “Model fabrication using surface layout projection”, Computer-Aided Design 27(4), 1995, pp.283-291.
[22]. Guoxin Yu, Nicholas M. Patrikalakis, Takashi Maekawa, “Optimal development of doubly curved surface”, Computer Aided Geometric Design 17, 2000, pp.545-577.
[23]. McCartney, B. K. Hinds, and B. L. Seow, “The Flattening of Triangulated Surfaces Incorporating Darts and Gussets,” Computer-Aided Design, Vol. 31, pp. 249-260, 1999.
[24]. N. Reddy, An Introduction to Finite Element Method, 2d edition, McGraw-Hill 1993.
[25]. R. Manning, “Computerized Pattern Cutting,” Computer-Aided Design, Vol. 12, No. 1, pp. 43-47, 1980.
[26]. Dekker, S. Khan, and E. West, “Models for Understanding the 3D Human Body Form,” in proc. of the IEEE International Workshop on Model─Based 3D Image Analysis, 1998.
[27]. Parida, S. P. Murdur, “Constraint-satisfying planar development of complex surfaces”, Computer-Aided Design 25(4), 1993, pp.225-243.
[28]. Aono, D. E. Breen, M. J. Wozny, “Fitting a woven-cloth model to a curved surface: mapping algorithms” , Computer-Aided Design 26(4), 1994, pp.278-292.
[29]. M. Aono. P. Denti, D. E. Breen, M. J. Wozny, “Fitting a woven cloth model to a curved surface: dart insertion”, Computer Graphics in Textiles and Apparel, 1996, pp.60-70.
[30]. M. D. Shieh, C. C. Yang, K. Z. Sun, M. J. Tsai, and J. J. Fang, “Computer Aided System for 2D Flatting of 3D Apparel — Non-developable Surfaces,”
[31]. M. Hamdi, and C. K. Lee, “Dynamic Load-Balancing of Image Processing Applications on Clusters of Workstations,” Parallel Computing, Vol. 22, pp. 1477-1492, 1997.
[32]. Jojic, J. Gu, H. C. Shen, and T. S. Hung, “Computer Modeling, Analysis, and Synthesis of Dressed Humans,” IEEE Trans. on Circuit and System for Video Technology, Vol. 9, No. 2, pp.378-388, 1999.
[33]. Azariadis, N. Aspragathos, “Design of plane developments of doubly curved surfaces”, Computer-Aided Design 29(10), 1997, pp.675-685.
[34]. Azariadis, N. Aspragathos, “Surface flatting based on constraint global optimization”, WSCG’2000, Vol I, 2000,pp 68-75.
[35]. P. Lee, “Efficient Algorithms for Data Distribution on Distributed Memory Parallel Computers,” IEEE Trans. on Parallel and Distributed Systems, Vol. 8, No. 8, pp. 825-839, 1997
[36]. P. S. V. Raj, “Evolution of Generic Mathematical Models and Algorithms for the Surface Development and Manufacture of Complex Ducts,” Journal of Engineering for Industry, Vol. 117, pp. 177-185, 1995.
[37]. Angenent, S. Haker, A. Tannenbaum, and R. Kikinis, “On the Laplace-Beltrami Operator and Brain Surface Flattening,” IEEE Trans. on Medical Imaging, Vol. 18, No. 8, pp. 700-711, 1999.
[38]. Gray, “In Virtual Fashion,” IEEE Spectrum pp. 19-25, February 1998.
[39]. Haker, S. Angenent, A. Tannenbaum, and R. Kikinis, “Nondistorting Flattening Maps and the 3-D Visualization of Colon CT Images,” IEEE Trans. on Medical Imaging, Vol. 19, No. 7, pp. 700-711, 2000.
[40]. Shimada and Y. Tada, “Approximate Transformation of an Arbitrary Curved Surface into a Plane using Dynamic Programming,” Computer-Aided Design, Vol. 23, No. 2, pp. 153-159, 1991.
[41]. T. Shimada and Y. Tada, “Development of a Curved Surface using a Finite Element Method,” in Brebbia, C. A. and Hernandez, S. (eds) proc. 1st Int. Conf. Computer-Aided Optimum Design of Structures, Recent Advances Springer-Verlag, pp. 23-30, 1989.
[42]. S. Lin, R. W. H. Lau, K. Hwang, X. Lin, and P. Y. S. Cheung, “Adaptive Parallel Rendering on Multiprocessors and Workstation Clusters,” IEEE Trans. on Parallel and Distributed Systems, Vol. 12, No. 3, pp. 241-258, 2001.
[43]. Wonjoon Cho, Nicholas M. Patrikalakis, Jaime Peraire, “Approximate development of trimmed patches for surface tessellation”, Computer-Aided Design 30(14), 1998, pp.1077-1087.
[44]. Y. F. Zhao, T. N. Wong, S. T. Tan, and W. J. Chen, “A Model for Simulating Flexible Surfaces of Cloth Objects,” Computer & Structures, Vol. 63, No. 1, pp. 133-147, 1997.
[45]. Y. Zhang, H. Kameda, and S. L. Hung, “Comparison of Dynamic and Static Load- Balancing Strategies in heterogeneous Distributed Systems,” IEE Proc.-Comput. Digit Tech., Vol. 144, No. 2, pp.100-106, 1997.
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
* *