English  |  正體中文  |  简体中文  |  Items with full text/Total items : 2737/2828
Visitors : 3537698      Online Users : 28
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ir.lib.stu.edu.tw:80/ir/handle/310903100/2929

Title: 微機電感測器應用於蹼泳動作分析
MEMS Sensors Applied in Finswimming Movement Analysis
Authors: 黃淑娟
Shu-Chuan Huang
Contributors: 資訊工程系碩士班
林承穎
Keywords: 蹼泳、微機電、加速度、陀螺儀、頻譜分析
fin swimming, Micro Electro Mechanical systems, accelerometers, gyroscopes, spectrum analysis.
Date: 2012
Issue Date: 2012-11-13 16:53:09 (UTC+8)
Publisher: 高雄市:[樹德科技大學資訊工程系碩士班]
Abstract: 本研究目的:利用微機電感測器系統(MEMS sensors system)的量測,來分析蹼泳游進50公尺的動作,優秀選手(世運培訓選手、亞錦賽選手、全國蹼泳錦標賽第一名)與次優秀選手(全國蹼泳錦標賽第五至八名選手)間在腳蹼游進中主要四個運動肢段的加速度與角速度的差異分析。方法:利用微機電三軸加速規與陀螺儀組成的微機電感測器系統,擷取三位優秀選手與三位次優秀選手,在蹼泳游進50公尺的動作主要四個運動肢段的加速度與角速度資料作統計分析。結果:1.優秀選手低頻位置在1.4~1.6Hz之間,擺頻較接近。次優秀選手低頻位置在0.9~1.74Hz之間擺頻較分散。在擺頻頻譜的低頻部份,優秀選手群平均絕對值誤差低於平均值為86.7%,次優秀選手群平均絕對值誤差低於平均值為50%,在Y軸之數據尤其明顯。因此,優秀選手群擺頻響應雷同,而優秀選手群與次優秀群間的擺頻明顯有差異,次優秀選手群與次優秀群間的擺頻則無明顯差異。擺頻之計算難以目視手動計時為之只能求其平均擺頻,依曲線計時計次換算雖準確卻費時,因此本論文提出利用 FFT來計算擺頻,其結果與依曲線計時非常接近,也因此FFT計算擺頻有速度快和準確的效果。 2.腳蹼的Y軸的角速度值最為明顯,其中優秀選手群下擺最大角速度平均為659(deg/s),上擺最大角速度平均為596(deg/s)。次優秀選手群下擺最大角速度平均為436(deg/s),上擺最大角速度平均為361(deg/s),只跟自己的另外一趟比較無顯著差異。 3.三軸的加速度值以Z軸最為明顯,其中優秀選手群上擺最大加速度平均值為32.35(m/s2)。次優秀選手群上擺最大加速度平均值為27.26(m/s2),優秀選手群與次優秀選手群有顯著差異。4. 優秀選手群比次優秀選手群成績優20%,且最大角速度平均值檢定後均大於次優秀選手群。結論:優秀選手群比次優秀選手群在擺頻的頻域較次優秀選手集中,成績秒速、三軸最大值、與次優秀選手有明顯差異,尤其角速度Y軸差異最為明顯。透過微機電感測器系統,不影響選手之動作表現,並能呈現不同屬性選手動作表現相關參數之差異性。
Research purpose: Use the measurement of Micro Electro Mechanical systems (MEMS) sensors to analyze the actions of fineswimming for 50 meters. The elite athlete ( the World Game training athlete of Taiwan, Fineswimming Asia Championship athlete, champion of Taiwan National Championship ) and sub-elite athlete (the fifth to eighth of Taiwan National Championship athlete). The analysis of the major four sports limbs acceleration and angular velocity differences between elite and sub-elite athlete. Research method: Use of three-axis MEMS acceleration and gyroscope. Take three elite athlete with three sub-elite athlete, swim in a 50-meter movement of actions of the main four limbs of acceleration and angular velocity data for statistical analysis. Result: 1. Elite athlete swing low-frequency position between 1.4 ~ 1.6Hz which are very close. Sub-elite athlete swing low-frequency position between 0.9~1.74Hz which are not close. Elite athlete group swing frequency responses are similar. Elite athlete group and sub-elite group of the swing frequency was significantly different. Placed among the sub-elite athletes group and sub-elite athletes group swing frequency was not significantly different. Swing frequency calculation is difficult to visual manual timing whom can only find the average swing frequency. This paper presents the use of the FFT to calculate the swing frequency. Swing frequency FFT calculation there are faster and more accurate results. 2. Triaxial angular velocity of the Y-axis value of the most evident, elite athlete group put the maximum angular velocity an average of 659 (deg / s), hem average of the maximum angular velocity for 596 (deg / s). The value of sub-elite athlete group are lower then elite group with 436 and 361 (deg / s). 3. Triaxial acceleration value to the Z-axis is most evident, elite athlete group on the average maximum acceleration of 32.35 (m/s2). The value of sub-elite athlete group are lower then elite group with 27.26 (m/s2). There are significant differences in elite athlete group and sub-elite athlete group. Conclusion: The elite group of athlete than sub-elite athlete group in the frequency domain, swim frequency more focus on results. Elite athletes group is better than sub-elite athlete group by 20%. In speed, three-axis maximum value, with significant differences in sub-elite athletes, in particular, the angular velocity of Y axis is most obvious difference. Through the MEMS sensors, does not affect the actions of the athlete, and can render the difference of operations performance-related parameters from different property athlete.
Appears in Collections:[資訊工程系(所) ] 博碩士論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML264View/Open
stu-101-s99739107-1.pdf全文4628KbAdobe PDF428View/Open


All items in STUAIR are protected by copyright, with all rights reserved.

 


無標題文件

著作權政策宣告:

1.

本網站之數位內容為樹德科技大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
 
2. 本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本校護人員(clairhsu@stu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
 
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback