English  |  正體中文  |  简体中文  |  Items with full text/Total items : 2737/2828
Visitors : 345731      Online Users : 74
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ir.lib.stu.edu.tw:80/ir/handle/310903100/2689

Title: 運用正弦函數組合技術於試產階段品質之預測
Using sinusoid combination technology in the prediction quality of the pilot production stage
Authors: 林明俊
Ming-Chun Lin
Contributors: 資訊管理系碩士班
Keywords: 小樣本;極值理論;正弦函數
Small data set;Extreme value theory;Sinusoid combination
Date: 2011
Issue Date: 2011-12-01 13:33:48 (UTC+8)
Publisher: 高雄市:[樹德科技大學資訊管理系碩士班]
Abstract: 小樣本的資料往往使得研究人員難以得到穩定的結果。然而,這樣的問題卻經常發生,例如在預測恐怖攻擊,診斷新的疾病或者是試驗產品的品質預測問題。就本質而言,在這些案例之中皆因為樣本數量不足,所以造成可提供的資訊不足以建立可靠的統計模型,用以提取有用的知識。
Small data set problems often make it difficult for researchers to obtain robust conclusions. However, such problems often arise, such as in the prediction of a terrorist attacks, new disease diagnoses, and pilot product management knowledge. Essentially, in such cases, either insufficient samples or prediction attributes mean it is statistically hard to build reliable models for extracting useful knowledge.
Faced with a specific small data set problem, this research first applies extreme value theory to estimate the domain range of an attribute, and then uses a virtual sample generation technique to fill the information gaps in the sparse data. Further, the sinusoid combination of real attributes is developed to construct a virtual attribute, which is used to find a more effective attribute to build the knowledge model. A real data set is employed to validate the performance of the proposed method by comparing it with the Artificial Neural Network and Mega-Trend-Diffusion approaches. The results indicate that the prediction error rate can be significantly decreased by applying the proposed method to very small data sets.
Appears in Collections:[資訊管理系(所)] 博碩士論文

Files in This Item:

File Description SizeFormat
stu-100-s98631112-1.pdf全文2236KbAdobe PDF1285View/Open

All items in STUAIR are protected by copyright, with all rights reserved.





2. 本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本校護人員(clairhsu@stu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback